

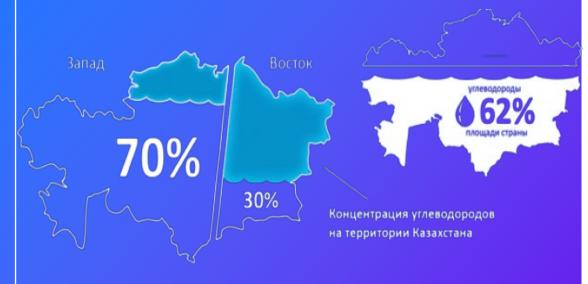
ОСОБЕННОСТИ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ И ВОЗМОЖНОСТИ РАСШИРЕНИЯ ЗАПАСОВ МЕСТОРОЖДЕНИЙ ВЫСОКО ВЯЗКОЙ НЕФТИ ЗАПАДНОГО КАЗАХ СТАНА



ATYRAU OIL AND GAS UNIVERSITY

Авторы: Ажгалиев Д.К., Жиенгалиев А.С., Нурсултанова С.Н. Докладчик: Жиенгалиев Арайбек Серикулы Младший научный сотрудник Атырауского университета нефти и газа им. С.Утебаева

ОСОБЕННОСТИ ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ И ВОЗМОЖНОСТИ РАСШИРЕНИЯ ЗАПАСОВ МЕСТОРОЖДЕНИЙ ВЫСОКОВЯЗКОЙ НЕФТИ ЗАПАДНОГО КАЗАХСТАНА



1. Состояние изученности и основные тенденции развития отрасли

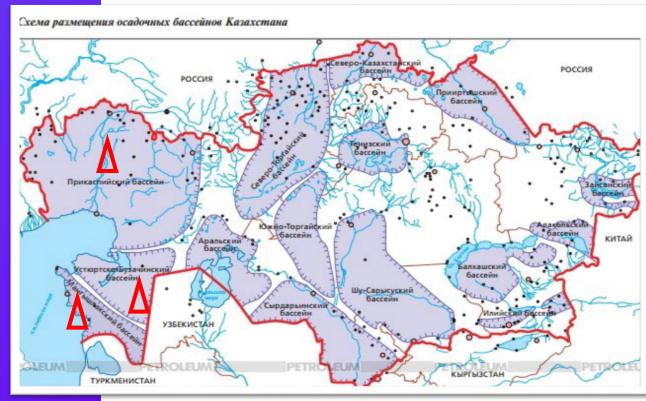
Актуальные вопросы

• <u>Уточнение характеристик и особенностей</u> внутреннего строения месторождений ВВН

• Обоснования благоприятных предпосылок для увеличения запасов ВВН

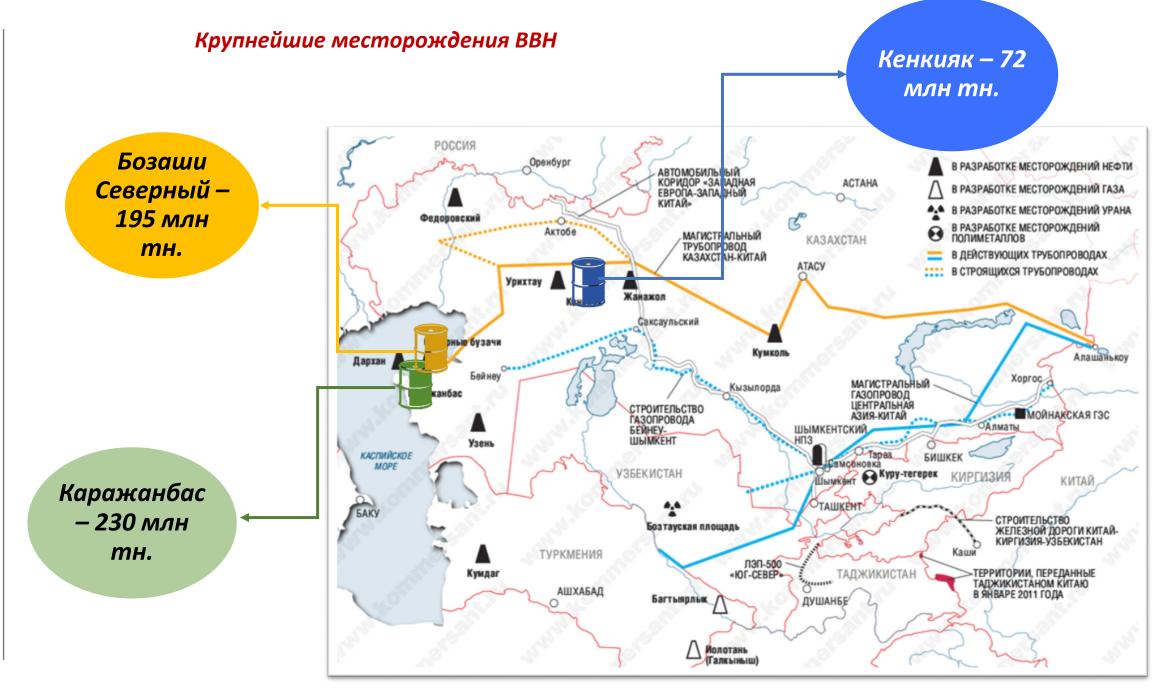
• Повышение эффективности разрабатываемых месторождений

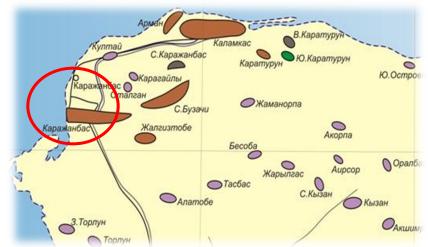
2. Основные исторические показатели изучения скоплений ВВН


По значительному распространению скоплений ВВН, в т.ч. ТН и ПБ, выделяются 4 основных региона:

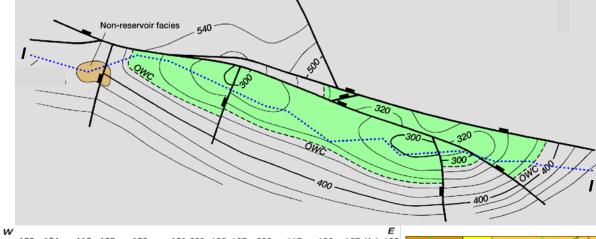
- Восточная бортовая зона ПВ;
- Юго-восточная бортовая зона ПВ;
- Бозашинское поднятия (Устюрт-Бозаши);
- Жетыбай-Узеньская ступень (Мангышлак).

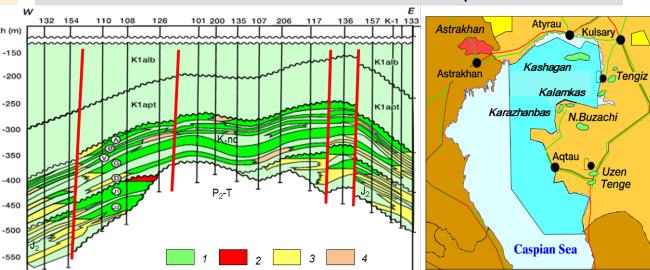
более 30 месторождений с ВВН;


160 нефтенасыщенные пласты

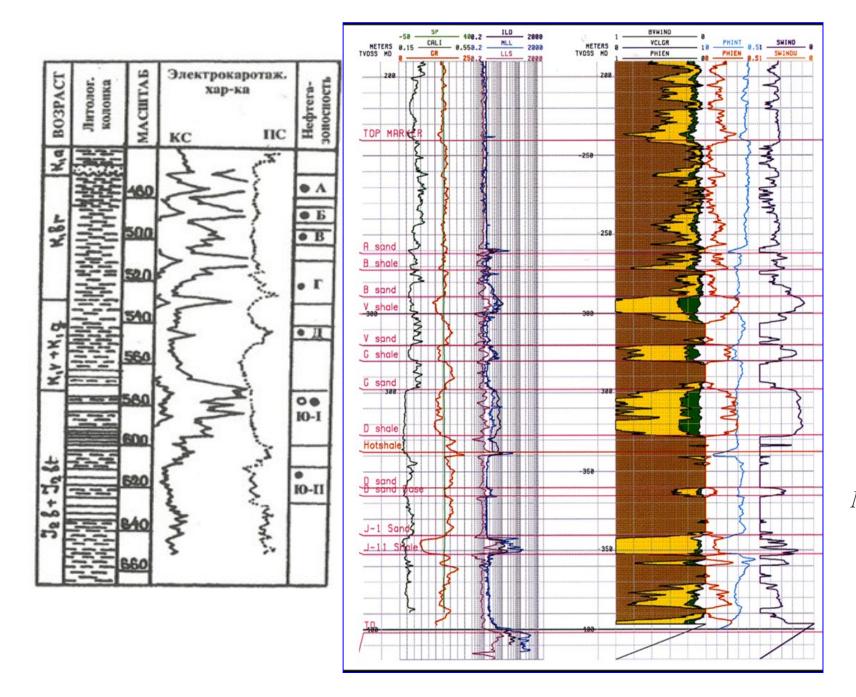

4

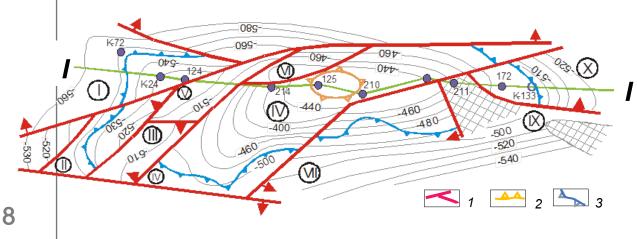
25 пластов-горизонтов (ТН плотность более 0,934

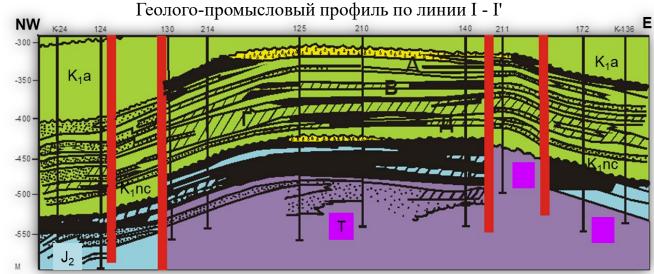




Месторождение *Каражанбас*, расположенное на полуострове Бузачи в Мангистауской области Западного Казахстана, характеризуется высокой вязкостью и большой смолистостью нефти при значительном содержании сернистых соединений. Каражанбас является одним из самых крупных неглубокозалегающих месторождений высоковязкой нефти на территории СНГ. Тяжёлая, высокосмолистая нефть уникальна по составу, поскольку содержит ванадий и никель.


Геолого-промысловый профиль по линии I – I



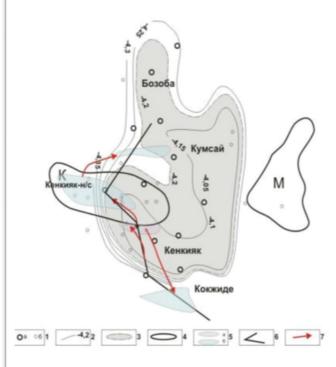


Месторождение Каражанбас

Месторождение *Бозаши Северный* расположено в Мангистауской области, в 175 км к северу от г. Актау. Серией оперяющих малоамплитудных нарушений складка разделена на десять блоков (I-X). Установлена продуктивность отложений барремского и готеривского ярусов нижнего мела (пласты А, Б, В, Г) и батбайосского ярусов средней юры (горизонты Ю-І и Ю-II). Залежи нефтяные, газонефтяные с высотами нефтяных частей 5,8-81,1 м, газовых - 3,1-16,9 м. Коллекторы поровые, представлены песчаниками и алевролитам. Нефти тяжелые с плотностью 938-940 $\kappa\Gamma/M3$, сернистые, парафинистые, смолистые. Содержание серы - 2%, парафина 1,5%, асфальтенов 5,6-5,8%, смол силикагелевых 14,8-16,9%. Характерной особенностью нефтей является наличие в них промышленных концентраций ванадия и никеля. Газ по составу относится к "сухим", содержит метана 95,5 % и тяжелых углеводородов - 4,5 %.

Пара	I объект
метры	
Средняя глубина залегания, м	470
ТНК, м	428-436
Тип залежи	пластовая сводовая тектонически - экранированная
Тип коллектора	терригенно- поровый
Средняя общая толщина, м	47.6
Средняя нефтенасыщенная толщина, м	20.8
Средняя газонасыщенная толщина, м	4.6
Средняя пористость, д.ед.	0.34
Средняя проницаемость, мкм ²	2.43
Коэффициент начальной нефтенасыщенности, д.ед.	0.73
Коэффициент песчанистости, д.ед.	0.42
Коэффициент расчлененности, д.ед.	5.9
Начальная пластовая температура, град. С	29.7
Начальное пластовое давление, МПа	5.8
Вязкость нефти в пластовых условиях, мПа*с	380
Плотность нефти в пластовых условиях, т/м ³	0.92
Объемный коэффициент нефти, д.ед.	1.029
Давление насыщения нефти газом начальное (текущее), МПа	3.97 (2.29)
Газосодержание начальное (текущее), м3/ т	11.8 (7.39)
Вязкость воды в пластовых условиях, мПа*с	1.05
Плотность воды в пластовых условиях, т/м3	1.04

Табл. 1. Основные геолого-физические характеристики первого эксплуатационного объекта


Месторождение *Кенкияк* приурочено к асимметричной брахиантиклинальной складке, разбитой тектоническим нарушением на четыре поля. Технологическая схема составлена на терригенные

продуктивные горизонты II и III средн еюрского возроста на глубине 300-350 м. Породы-коллекторы представлены частым чередованием песка, песчаника, алевролитов и глинистых пород. Нефтенасыщенная мощность — 25,7 м, пористость — 30,5 %, проницаемость — 4 Д, нефтенасыщенность — 72 %, вязкость нефти при 20 °C — 180 сП, плотность нефти — 0,915 г/см³

Суммарный продуктивный этаж охватывает интервал 160-4300 м. Разрез представлен

переслаиванием <u>песчаников</u> разной степени цементации, алевролитов, гравелитов, глин и аргиллитов. Предположительно, миграция нефти идет из отложений среднего <u>карбона</u> и нижней перми.

Месторождение Кенкияк. План расположения залежей нефти в каменноугольных и надсолевых отложениях. Составил О.С. Обрядчиков

1-скважины вскрывшие отложения: а-подсолевые, 6-только надсолевые, 2-изогипсы кровли подсолевых отложений в км., 3-контур залежи нефти в карбонатах башкирского яруса, 4-контур соляного массива Кенкияк, 5-залежи нефти в надсолевом комплексе: а-в пермотриасе, б-в юрско-меловых отложениях,

6-линия профиля, 7-направление миграции нефти.

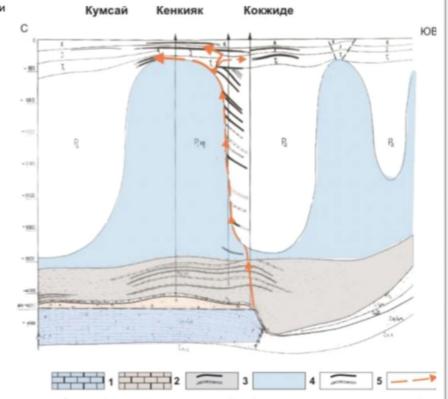
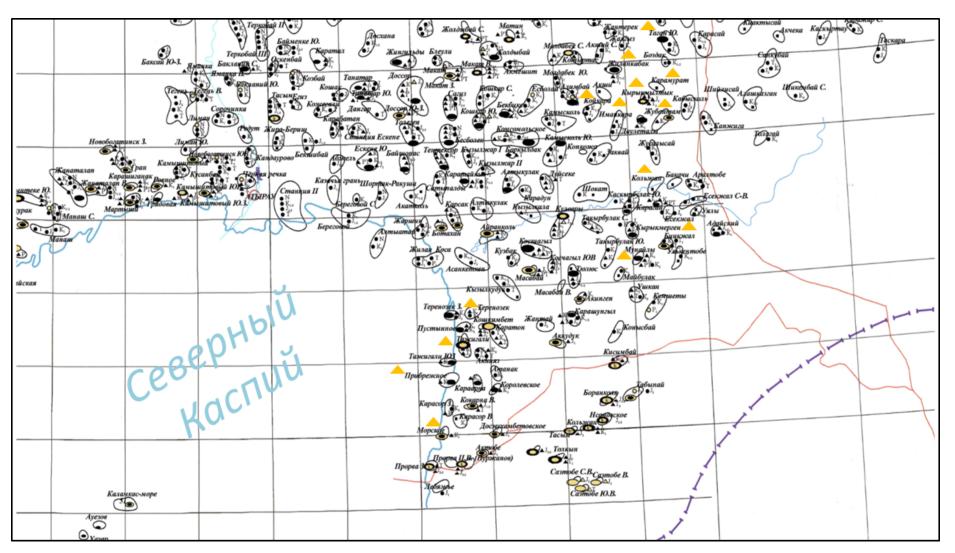



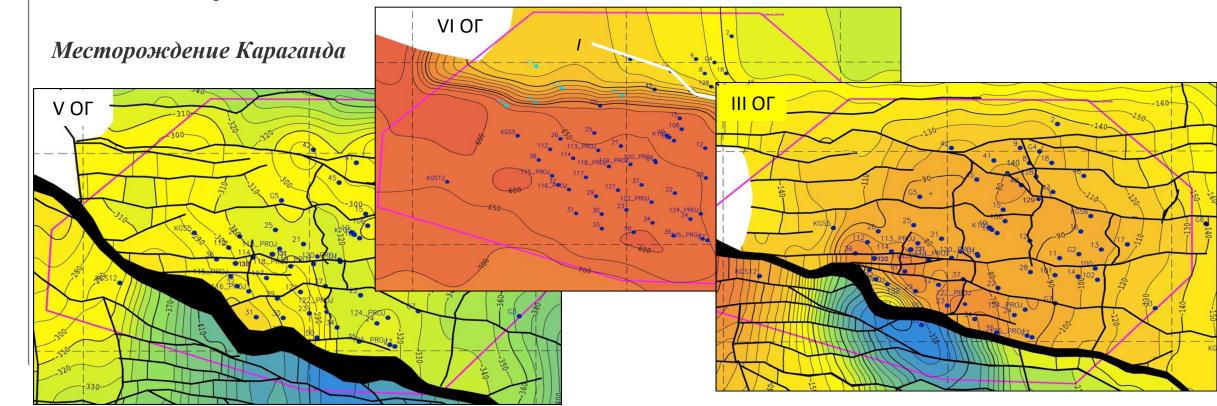
 Схема формирования залежей нефти и газа на солянокупольной структуре Кенкияк и межкупольном поднятии Кумсай за счёт вертикальномиграции из скоплений в подсолевых отложениях и последующего латерального перемещения. Составил О.С. Обрядчиков.

 -известняки светлые, органогенные поздневизейско-раннебашкирского возраста, 2-залежь нефти в нижнебашкирских карбонатах,
 3-ассельско-артинские терригенные отложения и обнаруженные в них нефтегазовые залежи, 4-соленосные отложения кунгурского яруса, образующие соляные массивы,5-залежи нефти и газа в надсолевых отложениях,6-пути миграции нефти и газа из залежи в нижнебашкирских известняках в нижнепермские и надсолевые отложения

Схема месторождений высоковязкой нефти южной части Прикаспийской впадины (Атырауская область)

- Мортук
- Прибрежное
- Мунайлы
- Биикжал
- Карамурат
- Алимбай
- ... и т.д.

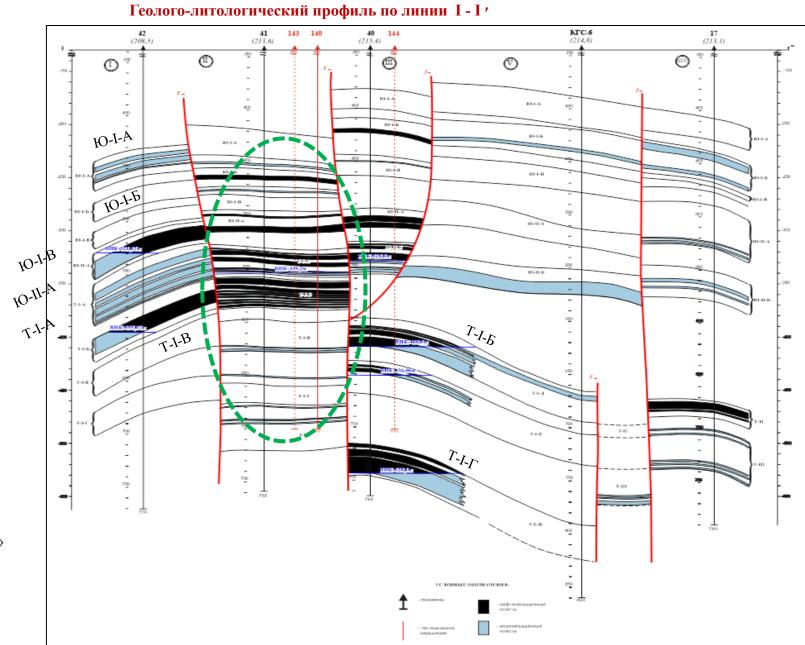
3. Геологическая основа для обоснования возможностей увеличения запасов ВВН


ATYRAU OIL ANI

Высокая вероятность расширения площади продуктивности и объемов запасов ВВН обосновывается следующим.

- Высока вероятность открытия рентабельных залежей и неглубоких шахтных добыч до глубины 500 м.
- Выявленные битуминозные песчаные породы должны подразумевать оценку таких месторождений как битумнонефтяных залежей.

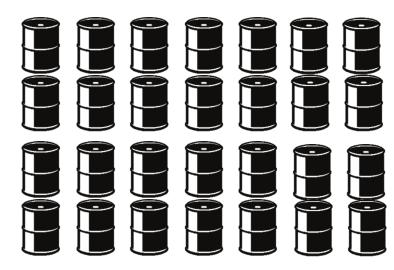
Поэтому, в общем балансе месторождений должны учитываться все виды нетрадиционного углеводородного сырья, в т.ч.: ВВН, ТН, ПБ и др.



ATYRAU OIL ANI GAS UNIVERSITY

Месторождение Караганда

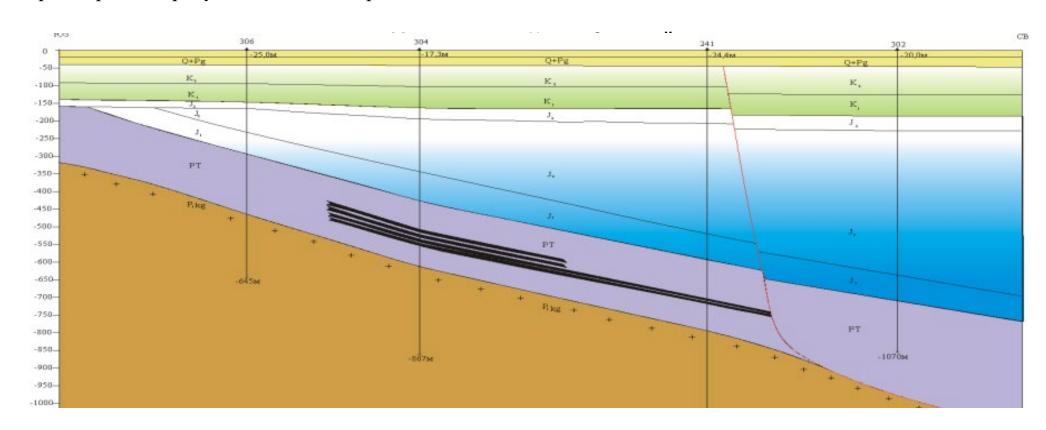
- Площадь поднятия 2,9 х 1,6 км, Амплитуда – 70 м.
- Блоковое строение и разломная тектоника: I объект 12 блоков, II объект 5 блоков, III объект 5 блоков.
- Триасовые залежи в северной части продуктивного крыла (северное поднятие).
- II объект: блоки I, II, III¹, IV, XXII.
- III объект: блоки II, VI, XII, XIV, XX.
- Глубина стратиграфического перерыва увеличивается с севера и СВ на юг в сторону прикупольной части. «Стабильная» в этом смысле зона с нормальным залеганием «Ю-II Т-I» приходится на приподнятый «триасовый» участок (блоки II, III, III¹, IV)



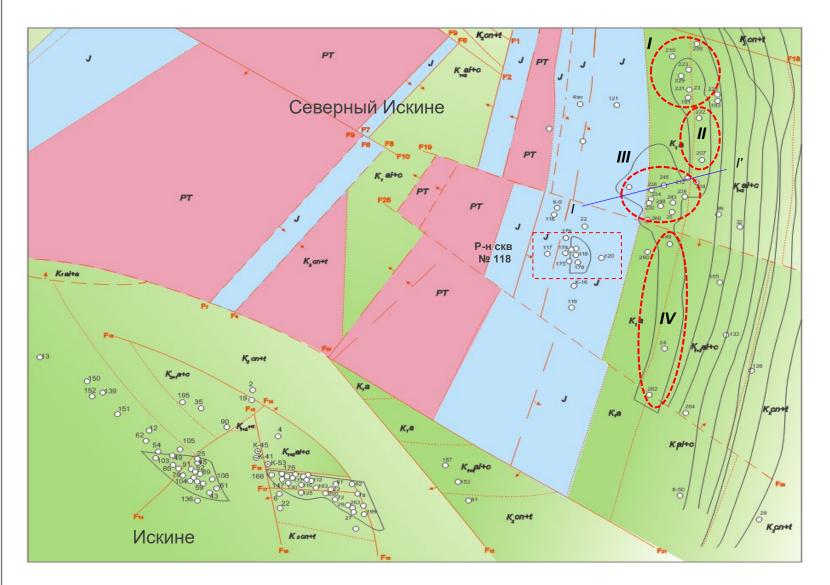
Запасы традиционной нефти

 $BBH + TH + \Pi B$

Запасы традиционной нефти


H

Запасы нетрадиционной нефти


В период нахождения залежей в консервации происходят процессы сегрегации и гравитационного разделения.

- В связи с этим «остаточная нефть» может всплывать на верхние интервалы разреза, в кровлю пласта.
- Формирование вторичных залежей нефти способствует и приводит к увеличению запасов и расширению продуктивности месторождений.

Геолого-тектоническая схема месторождения Искине

- два участка: Искине и Искине Северное;
- 3 объекта разработки (горизонты): I-аптский, II-неокомский, IIIпермотриас.
- впервые продуктивность триаса выявлена в скважине 181;
- по продуктивности триасового (пермотриасового) гор-та выделено 4 поля: I (191, 216), II (222, 207), III (242, 249, 212), IV (249, 250, 262);
- доразведка в пределах IV поля, сосредоточены основные остаточные извлекаемые запасы;
- недостаточная степень изученности IV поля;
- обоснование постановки объемной сейсморазведки 3Д;
- задача оценки площади и дизайна, методики исследований 3Д-МОГТ.

Анализ состояние изученности прогнозных запасов ВВН.

- Разделить все нефти на несколько типов и классы.
- Залежи претерпевают изменения и приобретают свойства ВВН.

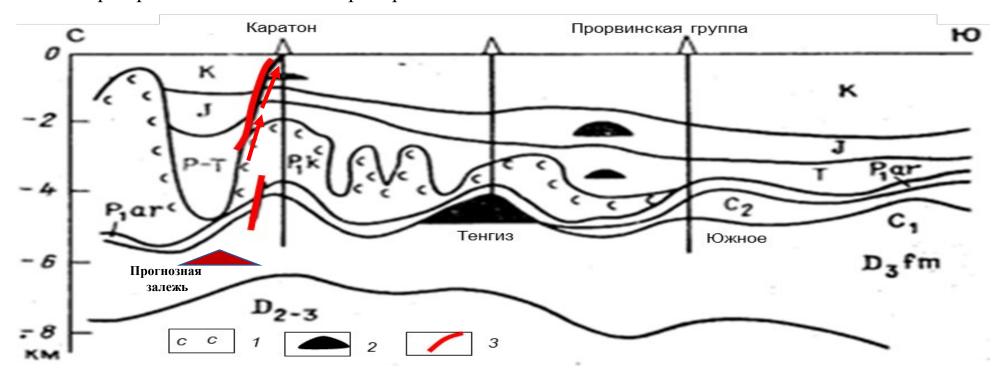
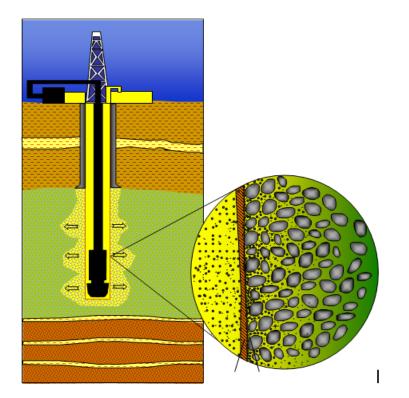
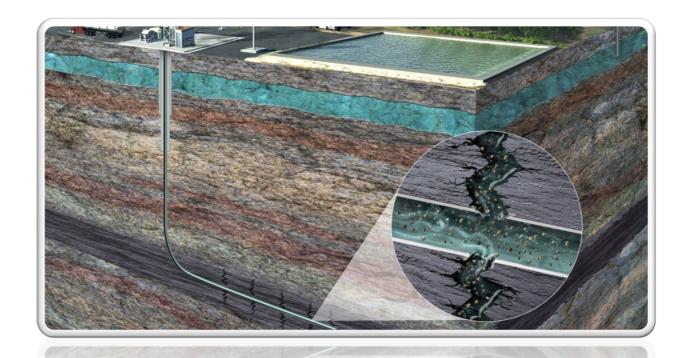


Рис. 5 — Каратон-Тенгизская зона нефтегазонакопления. Геологический профиль по данным Н.Т. Айтиевой и С.У. Утегалиева (1986 г.)




Технические ошибки при планировании работ на месторождениях.

• В результате, объем нефти и продуктивность горизонтов становятся «заниженные».

Можно применить глубокую перфорацию с реальной глубиной каналов более 0,5 м или гидравлический разрыв пласта.

• Открываются интервалы для дострела и расширения этажа нефтегазоносности.

• Будущее принадлежит нетрадиционным видам УВС. Это свидетельствует о неизбежном освоения в будущем ТН и ПБ.

• По оценкам специалистов, мировой суммарный объем НУВС оценивается в 810 млрд тонн, что почти в пять раз превышает объем остаточных извлекаемых запасов нефтей малой и средней вязкости, составляющий лишь 162,3 млрд тонн.

• в Прикаспийской впадине только в поверхностном залегании геологами в различные годы были встречены многочисленные (свыше 120) проявлений и месторождений ПБ и ВВН.

• Районы Западного Казахстана высоко перспективны для открытия мелких, средних и крупных месторождений твердых, вязко-пластичных и жидких природных битумов (ПБ) и высоковязких нефтей (ВВН).

ATYRAU OIL AND GAS UNIVERSITY